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abstract. The paper introduces (in our knowledge first) attempt to
define the concept of factorization within the Dempster-Shafer theory
of evidence. In the same way as in probability theory, the presented
concept can support procedures for efficient multidimensional model
construction and processing. The main result of this paper is a fac-
torization lemma describing, in the same way as in probability theory,
the relationship between factorization and conditional independence.

1 Introduction

It was at the beginning of 80’s of the last century when I first heard about
Dempster-Shafer theory of Evidence, and it was Petr Hájek who was lecturing
on this topic. In fact it was him who organized (and still is organizing) a
series of working seminars (so called Hájek’s seminars) at the Institute of
Mathematics of the Czechoslovak Academy of Sciences, where not only me
but many regular attendees from several research and university institutions
heard about some interesting topics first time.

To tell the truth, in those days, when mainframe computers with several
hundreds of kilobytes of memory represented the best available computational
technique, I considered Dempster-Shafer theory to be a rather academic topic.
At that time I could not imagine that a model with super-exponential space
complexity could ever be applied to problems of practice. And yet, in the
second half of 80’s, Petr Hájek became an enthusiastic booster of this tech-
nique [Háj87, Háj92, HH92b, HH92a, Háj93, Háj94]. And as it has appeared
later he was right. Since that time the computational tools have empowered
in such a way that these models have become computationally tractable.

Naturally, before Dempster-Shafer models started being employed to prob-
lems of practice, there was a great flowering of probabilistic (and also possi-
bilistic) models with their exponential computational complexity. This was
because a substantial decrease of computational complexity was achieved
with the help of models taking advantage of the concept of conditional in-
dependence. So, representing multidimensional probability distributions in a
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form of Graphical Markov Models (GMMs) (e.g. Bayesian networks) made
it possible to store in a computer memory distributions of hundreds (or even
thousands) of dimensions. However, studying properly probabilistic GMMs
one can realize that it is not the notion of conditional independence that
makes it possible to represent these models efficiently. The efficiency is based
on the notion of factorization, which in probability theory (due to factor-
ization lemma presented here as Lemma 1) coincide with conditional inde-
pendence. Going into details, one can notice that the notion of factorization
has been introduced in several different ways in probability theory, and some
others can still be studied.

This is why in this paper we shall first briefly analyze the notion of factor-
ization in probability theory and only afterwards will generalize the simplest
definition for the Dempster-Shafer theory of evidence.

2 Probabilistic Factorization

In this section we recall several notions from probability theory, which served
as an inspiration for the considerations presented in the further parts of this
paper. Here, we will consider a probability measure π (or ν) on a finite space

XN = X1 ×X2 × . . .×Xn,

i.e. an additive set function

π : P(XN ) −→ [0, 1],

for which π(XN ) = 1. For any K ⊆ N , symbol π↓K will denote its respective
marginal measure (for each B ⊆ XK):

π↓K(B) =
∑

A⊆XN

A↓K=B

π(A),

which is a probability measure on subspace

XK =×i∈KXi.

Let us remark that for K = ∅ we get π↓∅ = 1.
An analogous notation will be used also for projections of points and sets.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection into subspace XK will
be denoted

x↓K = (xi,i∈K) ,

and for A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.
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Consider a probability measure π and three disjoint groups of variables
XK = {Xi}i∈K , XL = {Xi}i∈L and XM = {Xi}i∈M (K,L, M ⊂ N , K 6=
∅ 6= L) having their values in XK , XL and XM , respectively. We say that XK

and XL are conditionally independent given XM (with respect to probability
measure π) if for all x ∈ XK∪L∪M

π↓K∪L∪M (x) · π↓M (x↓M ) = π↓K∪M (x↓K∪M ) · π↓L∪M (x↓L∪M ).

This property will be denoted by the symbol K ⊥⊥ L |M [π]. In case that M =
∅ then we say that groups of variables XK and XL are (unconditionally1)
independent, which is usually denoted by a simplified notation: K ⊥⊥ L [π].

As already mentioned in Introduction, the notion of factorization is intro-
duced in probability theory in several different ways, and therefore we will
use some adjectives to distinguish them from each other. The properties pre-
sented further in this section as lemmata and corollaries can be either found
in [Lau96] or can be directly deduced as trivial consequences of properties
presented there.

Simple factorization
Consider two nonempty sets K,L ⊆ N . We say that π factorizes with respect
to (K,L) if there exist two nonnegative functions

φ : XK −→ [0, +∞) and ψ : XL −→ [0,+∞),

such that for each x ∈ XK∪L the equality2

π↓K∪L(x) = φ(x↓K) · ψ(x↓L)

holds true.

LEMMA 1 (Factorization lemma) Let K,L ⊆ N be nonempty. π factorizes
with respect to (K, L) if and only if K ⊥⊥ L [π].

COROLLARY 2 π factorizes with respect to (K, L) if and only if

π↓K∪L(x) = π↓K(x↓K) · π↓K∪L(x↓L\K |x↓K∩L),

for all x ∈ XK∪L.

COROLLARY 3 Let π1, π2, π3, . . . be a sequence of probability measures each
of them factorizing with respect to (K, L). If this sequence is convergent then
also the limit measure lim

j→+∞
πj factorizes with respect to (K, L).

1Some author call it marginal independence.
2As usually, we do not distinguish between a singleton set and its element, so x stands

also for {x}, and x↓K is the only element from {x}↓K .
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Multiple factorization

Consider a finite system of nonempty subsets K1, K2, . . . , Kp of a set N . We
say that π factorizes with respect to (K1, K2, . . . , Kp) if there exist p functions
(i = 1, 2, . . . , p)

φi : XKi −→ [0, +∞),

such that for all x ∈ XK1∪...∪Kp

π↓K1∪...∪Kp(x) =
p∏

i=1

φi(x↓Ki).

REMARK 4 In this general case one can (using Lemma 1) derive a system
of conditional independence relations valid for a measure π factorizing with
respect to (K1, K2, . . . , Kp) but no assertion that could be considered a di-
rect analogy to any of the preceding Corollaries hold true. This is why the
following type of factorization is often considered.

Recursive factorization

Consider a finite system of nonempty subsets K1, K2, . . . , Kp of a set N . We
say that π recursively factorizes with respect to (K1, K2, . . . , Kp) if for each
i = 2, . . . , p π (simply) factorizes with respect to the pair

(K1 ∪ . . . ∪Ki−1, Ki).

REMARK 5 Using Corollary 2 iteratively one can get a formula express-
ing the multidimensional measure π↓K1∪...∪Kp with the help of its respective
marginals3

π↓K1∪...∪Kp(x) =
p∏

i=1

π↓Ki(x↓Ki\(K1∪...∪Ki−1)|x↓Ki∩(K1∪...∪Ki−1)).

So we are getting a trivial assertion saying that if π recursively factorizes with
respect to K1,K2, . . . , Kp then it also factorizes with respect to this system
of subsets. Let us stress that recursive factorization is much stronger than
multiple factorization. For example, for recursive factorization an analogy to
Corollary 3 holds true.

3Read (K1 ∪ . . . ∪K0) as ∅.
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Marginal factorization
Marginal factorization, which is introduced in this paragraph is usually not
considered by other authors. It is weaker than the recursive factorization
(and in a sense stronger than factorization).

Consider a finite system of nonempty subsets K1, K2, . . . , Kp of a set
N . We say that π marginally factorizes with respect to (K1,K2, . . . ,Kp)
if π↓K1∪...∪Kp is uniquely given by its marginals π↓K1 , π↓K2 , . . . , π↓Kp . More
precisely, for this type of factorization we assume that there exists a func-
tion F such that

π↓K1∪...∪Kp = F(π↓K1 , π↓K2 , . . . , π↓Kp).

As an interesting example of this type of factorization may serve the fol-
lowing function4 F

F(π↓K1 , π↓K2 , . . . , π↓Kp) = arg max{H(ν)},

where the maximization is performed over all measures ν on XK1∪...∪Kp for
which ν↓K1 = π↓K1 , ν↓K2 = π↓K2 , . . . , ν↓Kp = π↓Kp .

REMARK 6 It is obvious that this type of factorization strongly depends on
the function F . Generally, no factorization lemma holds true for marginal
factorization. However, if one considers a “reasonable” function F (for ex-
ample if it is continuous in a sense) then Corollary 3 holds true.

Decomposition
We say that a sequence K1,K2, . . . ,Kp meets the running intersection prop-
erty (RIP) if for all i = 2, . . . , p there exists j, 1 ≤ j < i, such that

Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .

LEMMA 7 (Decomposition lemma) If (K1,K2, . . . , Kp) meets RIP, then π
factorizes with respect to (K1,K2, . . . ,Kp) if and only if it recursively factor-
izes with respect to (K1,K2, . . . , Kp).

In the literature, measures factorizing with respect to systems of sets meet-
ing (after a possible reordering) RIP are usually called decomposable mea-
sures.

4H denotes the classical Shannon entropy

H(ν) = −
∑

x:ν(x)>0

ν(x) log(ν(x)).
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REMARK 8 It is interesting to notice that all these definitions coincide if
one considers only two sets of indices: π factorizes with respect to (K, L) if
and only if it marginally factorizes with respect to (K,L). Notice also that
a two-element sequence meets always RIP. This is why not many authors
distinguish different types of factorization.

3 D-S Theory—Notation

As in the previous section, we consider a finite multidimensional frame of
discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes XK . Consider K, L ⊆ N and M ⊆ K. In addition to a
projection of a set A we will need also an opposite operation, which will be
called a join. By a join of two sets A ⊆ XK and B ⊆ XL we will understand
a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that if K and L are disjoint, then A⊗B = A×B, if K = L then
A⊗B = A ∩B.

In view of this paper it is important to realize that if x ∈ C ⊆ XK∪L, then
x↓K ∈ C↓K and x↓L ∈ C↓L, which means that always

C ⊆ C↓K ⊗ C↓L.

However, and it is important to keep this in mind, it does not mean that
C = C↓K ⊗ C↓L. For example, considering 3-dimensional frame of dis-
cernment X{1,2,3} with Xi = {ai, āi} for all three i = 1, 2, 3, and C =
{a1a2a3, ā1a2a3, a1a2ā3} one gets

C↓{1,2} ⊗ C↓{2,3} = {a1a2, ā1a2} ⊗ {a2a3, a2ā3}
= {a1a2a3, ā1a2a3, a1a2ā3, ā1a2ā3} ! C.

In Dempster-Shafer theory of evidence several measures are used to model
the uncertainty (belief, plausibility and commonality measures). All of them
can be defined with the help of another set function called a basic (probability
or belief) assignment m on XK , i.e.

m : P(XK) −→ [0, 1]

for which
∑

A⊆XK
m(A) = 1. Since we will consider in this paper only

normalized basic assignments we will assume that m(∅) = 0. Set A ⊆ XK is
said to be a focal element of m if m(A) > 0.
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Analogously to marginal probability measures we consider also marginal
basic assignment of m defined on XN . For each K ⊆ N a marginal basic
assignment of m is defined (for each B ⊆ XK):

m↓K(B) =
∑

A⊆XN

A↓K=B

m(A).

Considering two basic assignments m1 and m2 defined on XK and XL, re-
spectively, we say that they are projective if

m↓K∩L
1 = m↓K∩L

1 .

4 Independence and factorization in D-S Theory

Let us now present a generally accepted notion of independence ([YSM02a,
She94, Stu93]).

DEFINITION 9 Let m be a basic assignment on XN and K,L ⊂ N be
nonempty disjoint. We say that groups of variables XK and XL are indepen-
dent5 with respect to basic assignment m (in notation K ⊥⊥ L [m]) if for all
A ⊆ XK∪L

m↓K∪L(A) =

{
m↓K(A↓K) ·m↓L(A↓L) if A = A↓K ×A↓L,

0 otherwise.

There are several generalizations of this notion of independence corre-
sponding to conditional independence (see for example papers [YSM02b,
CMW99, Kli06, She94, Stu93]). In this text we will use the generaliza-
tion, which was introduced in [JV] and which differs from the notion used in
[YSM02b, She94, Stu93]).

DEFINITION 10 Let m be a basic assignment on XN and K, L,M ⊂ N
be disjoint, K 6= ∅ 6= L. We say that groups of variables XK and XL

are conditionally independent given XM with respect to m (and denote it by
K ⊥⊥ L|M [m]), if for all A ⊆ XK∪L∪M :

• if A = A↓K∪M ⊗A↓L∪M then

m↓K∪L∪M (A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M ),

• if A 6= A↓K∪M ⊗A↓L∪M then m↓K∪L∪M (A) = 0.
5Couso et al. [CMW99] call this independence independence in random sets, Klir [Kli06]

non-interactivity.
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Notice that for M = ∅ the concept coincides with Definition 9. In addition
to this, and this is even more important, it was proven in [JV] that this notion
meets all the properties required from the notion of conditional independence,
so-called semigraphoid properties ([Lau96, Stu93]):

A1 (symmetry): K ⊥⊥ L |M [m] =⇒ L ⊥⊥ K |M [m],

A2 (decomposition): K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥ M | J [m],

A3 (weak union): K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥ L |M ∪ J [m],

A4 (contraction): (K ⊥⊥ L |M ∪ J [m]) & (K ⊥⊥ M | J [m])

=⇒ K ⊥⊥ L ∪M | J [m].

To be honest, we have to recall that all these properties (both the semi-
graphoid properties and the fact that the notion is a generalization of the
unconditional independence) hold true also for the concept of conditional in-
dependence used, for example, by Shenoy [She94] and Studený [Stu93] (which
is the same as the conditional non-interactivity used by Ben Yaghlane et al.
in [YSM02b]). In spite of the fact that their term is used also by several
other authors, we do not expect that it satisfies a characterization property
similar to the one proven below in Factorization lemma.

DEFINITION 11 (Simple factorization) Consider two nonempty sets K, L ⊆
N . We say that basic assignment m factorizes with respect to (K,L) if it
satisfy the following two properties:

• for all A ⊆ XK∪L, for which A 6= A↓K ⊗A↓L, m(A) = 0;

• there exist two nonnegative set functions

φ : P(XK) −→ [0, +∞) and ψ : P(XL) −→ [0, +∞),

such that for each A ⊆ XK∪L, for which A = A↓K ⊗A↓L, we have

m↓K∪L(A) = φ(A↓K) · ψ(A↓L)

LEMMA 12 (Factorization lemma) Let K,L ⊆ N be nonempty. m factorizes
with respect to (K, L) if and only if

K \ L ⊥⊥ L \K |K ∩ L [m].
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Proof First notice that for A ⊂ XK∪L, for which A 6= A↓K ⊗A↓L, m(A) =
0 in both situations: when m factorizes with respect to (K,L) and when
K \ L ⊥⊥ L \K |K ∩ L [m]. So, to prove implication

K \ L ⊥⊥ L \K |K ∩ L [m] =⇒ m factorizes with respect to (K, L)

is trivial. It is enough to take

φ = m↓L ψ =
m↓L

m↓K∩L
,

(for m↓K∩L(x↓K∩L) = 0 take 0
0 = 0).

To prove the opposite implication consider two functions φ and ψ meeting
the properties required by Definition 11, and consider an arbitrary A ⊂
XK∪L, for which A = A↓K ⊗ A↓L. Before we start computing the necessary
marginal basic assignments let us realize that

{
B ⊆ XK∪L : (B = B↓K ⊗B↓L)&(B↓K = A↓K)

}

=
{
A↓K ⊗ C : (C ⊆ XL)&(C↓K∩L = A↓K∩L)

}
.

When computing

m↓K(A↓K) =
∑

B⊆XK∪L

B↓K=A↓K

m↓K∪L(B)

we can summarize only over those B, for which B = B↓K ⊗ B↓L, because if
B 6= B↓K ⊗B↓L, as it follows from Definition 11, m(B) = 0. So we get

m↓K(A↓K) =
∑

B⊆XK∪L

B↓K=A↓K

m↓K∪L(B) =
∑

B⊆XK∪L

B↓K=A↓K

B=B↓K⊗B↓L

φ(B↓K) · ψ(B↓L)

=
∑

C⊆XL

C↓K∩L=A↓K∩L

φ(A↓K) · ψ(C)

= φ(A↓K) ·
∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C).

Computing analogously m↓L(A↓L) one gets

m↓L(A↓L) = ψ(A↓L) ·
∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D).
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Now, we have to compute m↓K∩L(A↓K∩L). For this, realize again that
{
B ⊆ XK∪L : (B = B↓K ⊗B↓L)&(B↓K∩L = A↓K∩L)

}

=
{
D ⊗ C : (D ⊆ XK)&(C ⊆ XL)&(D↓K∩L = C↓K∩L = A↓K∩L)

}
.

Using this we get

m↓K∩L(A↓K∩L) =
∑

B⊆XK∪L

B↓K∩L=A↓K∩L

m↓K∪L(B)

=
∑

B⊆XK∪L

B↓K∩L=A↓K∩L

B=B↓K⊗B↓L

φ(B↓K) · ψ(B↓L)

=
∑

D⊆XK

D↓K∩L=A↓K∩L

∑

C⊆XL

C↓K∩L=A↓K∩L

φ(D) · ψ(C)

=




∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)


 ·




∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)


 .

To finish the proof it is enough to substitute into the formula from Defi-
nition 10, which is in this context in the form

m↓K∪L(A) ·m↓K∩L(A↓K∩L) = m↓K(A↓K) ·m↓L(A↓L),

the corresponding expressions computed above:

m↓K∪L(A) ·m↓K∩L(A↓K∩L)

= φ(A↓K) · ψ(A↓L) ·




∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)


·




∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)


 ,

m↓K(A↓K) ·m↓L(A↓L)

=


φ(A↓K) ·

∑

C⊆XL

C↓K∩L=A↓K∩L

ψ(C)


·


ψ(A↓L) ·

∑

D⊆XK

D↓K∩L=A↓K∩L

φ(D)


 .

2
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COROLLARY 13 Let m1,m2,m3, . . . be a sequence of basic assignments each
of them factorizing with respect to (K, L). If this sequence is convergent then
also the limit basic assignment lim

j→+∞
mj factorizes with respect to (K, L).

Proof Since the considered frame of discernment XN is finite, it is obvi-
ous that convergence of m1,m2, . . . implies also the convergence of all its
marginals, i.e. also lim

j→+∞
m↓K

j , lim
j→+∞

m↓L
j and lim

j→+∞
m↓K∩L

j . The assump-

tion of factorization of all mj says that, due to Lemma 12,

m↓K∪L
j ·m↓K∩L

j = m↓K
j ·m↓L

j ,

and therefore also

lim
j→+∞

m↓K∪L
j · lim

j→+∞
m↓K∩L

j = lim
j→+∞

m↓K
j · lim

j→+∞
m↓L

j .

2

REMARK 14 The notion introduced in Definition 11 is an analogy to the
probabilistic simple factorization. Therefore, one can directly introduce also
recursive factorization and decomposition for Dempster-Shafer theory of evi-
dence. The problem whether analogical notions to multiple factorization and
marginal factorization are meaningful remains at the moment open.

5 Application of factorization to model construction

As said in Introduction, factorization is fully employed in probabilistic GMMs.
So it is quite natural, that some authors generalized the ideas of GMMs and
started considering analogous models within the framework of Dempster-
Shafer theory. In this paper, we shall go different way. We shall describe a
generalization of an alternative probabilistic approach, which is based on the
application of the operator of composition. After describing this operator,
we shall briefly illustrate its application to the construction of compositional
models in the framework of Dempster-Shafer.

Operator of Composition
Let K and L be two subsets of N . At this moment we do not pose any
restrictions on K and L; they may be but need not be disjoint, one may be
a subset of the other. We even admit that one or both of them are empty
but this is just a theoretical possibility without any practical impact6. Let
m1 and m2 be basic assignments on XK and XL, respectively.

6Notice that basic assignment m on X∅ is defined m(∅) = 1. Let us note that this is
the only case when we accept m(∅) > 0, otherwise m(∅) = 0 according to the classical
definitions of basic assignment and belief function, see [Sha76].
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DEFINITION 15 For two arbitrary basic assignments m1 on XK and m2

on XL a composition m1 . m2 is defined for all C ⊆ XK∪L by one of the
following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

[c] in all other cases

(m1 . m2)(C) = 0.

REMARK 16 Notice what this definition yields in the following trivial situ-
ations:

• if K ⊇ L then m1 . m2 = m1 (therefore, the operator of composition is
idempotent);

• if K ∩ L = ∅ then for each C ⊆ XK∪L

m1 . m2(C) =

{
m1(C↓K) ·m2(C↓L) for C = C↓K × C↓L,

0 otherwise,

(i.e. m1 . m2 is a basic assignment of independent groups of variables
XK and XL).

REMARK 17 Before presenting basic properties of this operator, we stress
that

• operator . is different from the famous Dempster’s rule of combination7

(these two rules coincide only under very special conditions, for details
see [JV09]);

• it is neither commutative nor associative.
7Recall that, for example, in contrast to Dempster’s rule of combination, the operator

of composition is idempotent.
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Table 1. Basic assignments
A m1(A)

{a1a2} 0.5
X1 × {ā2} 0.5

A m2(A)
{a3} 0.5
{ā3} 0.5

A m3(A)
{a2a3a4} 0.5

{ā2ā3} ×X4 0.5

The following two assertions were proven in [JVD07]

LEMMA 18 For arbitrary two basic assignments m1 on XK and m2 on XL

the following properties hold true:

1. m1 . m2 is a basic assignment on XK∪L;

2. (m1 . m2)↓K = m1;

3. m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .

LEMMA 19 For arbitrary basic assignment m on XM (M = K ∪ L) the fol-
lowing properties hold true:

1. m↓K . m = m;

2. m = m↓K . m↓L ⇐⇒ K \ L ⊥⊥ L \K |K ∩ L [m].

Thus, having a finite system of (low-dimensional) basic assignment m1,
m2, . . . ,mp one can consider a (multidimensional) basic assignment

m1 . m2 . m3 . . . . . mp = (. . . ((m1 . m2) . m3) . . . . . mp).

(Since the operator is not associative we have to stress that the operator is
applied subsequently from right to left.) Such a basic assignment is called a
compositional model .

Example
Let for i = 1, 2, 3, 4, Xi = {ai, āi} and consider three basic assignments m1,
m2 and m3 given in Table 1. Here we present only focal elements of the
respective basic assignments. This means that basic assignments equal 0
for all sets which are not presented in the tables. From the table we can
also see that m1, m2 and m3 are basic assignments on X1 × X2, X3 and
X2 ×X3 ×X4, respectively. First, notice that the given basic assignments
are pairwise projective, i.e. m

↓{2}
1 = m

↓{2}
3 and m2 = m

↓{3}
3 (m1 and m2

are trivially projective because they are defined on disjoint spaces). This is
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because both m
↓{2}
1 and m

↓{2}
3 acquire the same values for all (in our case

only two) focal elements:{a2} and {ā2}

m
↓{2}
1 ({a2}) = m

↓{2}
3 ({a2}) = 0.5,

m
↓{2}
1 ({ā2}) = m

↓{2}
3 ({ā2}) = 0.5,

and similarly

m2({a3}) = m
↓{3}
3 ({a3}) = 0.5,

m2({ā3}) = m
↓{3}
3 ({ā3}) = 0.5.

Now, we shall show that, in spite of the mentioned projectiveness (and due to
the already mentioned non-associativity of the operator of composition), one
can construct two different models corresponding to permutations m1, m2, m3

and m2,m3,m1.
First, compute m1 .m2. Since it is a composition of two basic assignments

defined on disjoint spaces, the number of focal elements of m1 . m2 equals
a product of numbers of focal elements of assignments m1 and m2: 2 × 2 =
4. The respective values of the composed basic assignments are computed
according to case [a] of Definition 15:

(m1 . m2)({a1a2a3}) =
m1({a1a2}) ·m2({a3})

m↓∅
2 (∅)

=
0.5 · 0.5

1
= 0.25,

(m1 . m2)({a1a2ā3}) =
m1({a1a2}) ·m2({ā3})

m↓∅
2 (∅)

=
0.5 · 0.5

1
= 0.25,

(m1 . m2)(X1 × {ā2a3}) =
m1(X1 × {ā2}) ·m2({a3})

m↓∅
2 (∅)

=
0.5 · 0.5

1
= 0.25,

(m1 . m2)(X1 × {ā2ā3}) =
m1(X1 × {ā2}) ·m2({ā3})

m↓∅
2 (∅)

=
0.5 · 0.5

1
= 0.25.

From this one immediately sees that also its marginal basic assignment (m1 .
m2)↓{2,3} has four focal elements ({a2a3}, {a2ā3}, {ā2a3}, {ā2ā3}) and there-
fore (m1 .m2)↓{2,3} and m3 cannot be projective. Therefore, computation of
m1 . m2 . m3 will be a little bit more complicated. Case [a] of Definition 15
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applies to two focal elements:

(m1 . m2 . m3)({a1a2a3a4})
=

(m1 . m2)({a1a2a3}) ·m3({a2a3a4})
m
↓{2,3}
3 ({a2a3})

=
0.25 · 0.5

0.5
= 0.25,

(m1 . m2 . m3)(X1 × {ā2ā3} ×X4)

=
(m1 . m2)(X1 × {ā2ā3}) ·m3({ā2ā3} ×X4)

m
↓{2,3}
3 ({ā2ā3})

=
0.25 · 0.5

0.5

= 0.25.

Values of the remaining two focal elements are assigned according to case [b]
of Definition 15:

(m1 . m2 . m3)({a1a2ā3} ×X4) = (m1 . m2)({a1a2ā3}) = 0.25,

(m1 . m2 . m3)(X1 × {ā2a3} ×X4) = (m1 . m2)(X1 × {ā2a3}) = 0.25.

Computation of m2 . m3 . m1 is simple. Since m2 is marginal to m3 it
follows from property (1) of Lemma 19 that m2 . m3 = m3. The remaining
computation of m3 . m1 consists in application of the formula from case [a]
of Definition 15 just to two focal elements {a1a2a3a4} and X1×{ā2ā3}×X4:

(m3 . m1)({a1a2a3a4}) =
m3({a2a3a4}) ·m1({a1a2})

m
↓{2}
1 ({a2})

=
0.5 · 0.5

0.5

= 0.5,

(m3 . m1)(X1 × {ā2ā3} ×X4) =
m3({ā2ā3} ×X4) ·m1(X1 × {ā2})

m
↓{2}
2 ({ā2})

=
0.5 · 0.5

0.5
= 0.5.

Table 2. Composed basic assignments.
C (m1 . m2 . m3)(C) (m2 . m3 . m1)(C)

{a1a2a3a4} 0.25 0.5
{a1a2ā3} ×X4 0.25 0

X1 × {ā2a3} ×X4 0.25 0
X1 × {ā2ā3} ×X4 0.25 0.5
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Both the resulting 4-dimensional basic assignments are recorded in Table 2
(recall once more that for all the other subsets of X1×X2×X3×X4, different
from those included in Table 2, both the assignments equal 0).

6 Conclusions

Inspired by the (simple) factorization in probability theory, we have intro-
duced an analogous notion in Dempster-Shafer theory of evidence. We have
shown that it meets the basic property of probabilistic factorization that is
anchored in the assertion widely known as Factorization lemma. Existence
of its Dempster-Shafer version (presented here as Lemma 12) forms a new
evidence supporting the definition of conditional independence introduced
first in [Jir07]8 and studied in more details in [JV] (see Definition 10). The
last section was included to persuade the reader that the notion of factoriza-
tion is not interesting only from the theoretical point of view but that it is
important also for applications, for multidimensional model construction.
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